NEW METABOLITES FROM *ASPERGILLUS TERREUS* RELATED TO THE BIOSYNTHESIS OF ASPULVINONES

Nobutoshi Ojima, Ikuko Takahashi, Kyozo Ogura, and Shuichi Seto* Chemical Research Institute of Non-Aqueous Solutions, Tohoku University, Katahira 2-1-1, Sendai, Japan

(Received in Japan 19 January 1976; received in UK for publication 17 February 1976)

We reported the isolation from Aspergillus terreus of seven metabolites including dihydroxypulvinone (1) and its derivatives with an extra hydroxyl group and/or C₅ units.^{1,2} Since a report appeared recently describing the isolation of 1 from the same fungus,³ we wish to propose for avoiding confusion that the name "aspulvinone" be used as the generic name for a series of these metabolites and that aspulvinone A \sim G be applied to the seven compounds which were designated compound A \sim G in our previous paper.¹

In a subsequent study on the biosynthesis of these compounds, we demonstrated that a cell-free enzyme system from the fungus catalyzed the transfer of the C_5 units from 3,3-dimethylallyl pyrophosphate (DMAPP) to the aryl rings of 1 to give the prenylated derivative $(\frac{2}{\sqrt{2}})$. However, the occurrence of 2 as a normal metabolite was unknown. This paper describes the isolation of this compound and its biogenetically related compound.

Silica gel chromatography of the ether extracts of the 10 day-old culture filtrate of Aspergillus terreus gave two new metabolits, aspulvinone H and aspulvinone I, the former being the major component. Aspulvinone H showed nmr signals at 1.80 (s. 12H), 3.38 (d. 4H, J = 8.0 Hz), 5.40 (t. 2H, J = 8.0 Hz), and 6.48-7.70 ppm (m. 7H), and was identified by the chromatographic and mass spectral comparison with 2 obtained by the enzymatic reaction of 1 with DMAPP. Aspulvinone I, mp 183-185°, showed uv and ir spectra of the aspulvinone type [uv, λ_{max}^{MeOH} nm(logE): 240(4.07), 326(4.24), 370(4.05); ir, λ_{max}^{KBr} cm⁻¹ : 3300, 1720, 1600]. The nmr spectrum showed signals at 1.78 (s. 6H), 3.38 (d. 2H, J = 8.0 Hz), 5.38 (t. 1H, J = 8.0 Hz), and 6.45-7.89 ppm (m. 8H). These data and the mass spectrum (M⁺, 364) support that aspulvinone I has the structure 3 or 4.

For a further confirmation of the relation between aspulvinone H and aspulvinone I, the enzymatic conversion of the latter to the former was examined. The incubation mixture contained, in a final volume of 1.0 ml, 50 μ mol of Tris-HCl buffer, pH 7.0, 10 μ mol of MgCl₂, 10 μ mol of KF, 30 nmol of ³H-labelled DMAPP, 50 nmol of aspulvinone I, and 0.2 mg of enzyme protein prepared as reported." The incubation was carried out at 37° for 1 hr, and the radioactive product obtained from the reaction mixture was identified with aspulvinone H. The yield of the conversion was 68% based on DMAPP.

The enzymatic formation of aspulvinone I was also observed in an early stage of the enzymatic reaction of $\sqrt[1]{}$ with ³H-labelled DMAPP. The incubation mixture contained the same as described above except that 1 µmol of $\sqrt[1]{}$ and 50 nmol of ³H-DMAPP were employed in place of aspulvinone I and ³H-DMAPP (30 nmol). The radiochromatographic analysis of the products revealed that both aspulvinone H and aspulvinone I were formed in a ratio of ca. 3 : 2 after 5 min, and that the ratio increased with the incubation time, the formation of the former being almost exclusive after 25 min.

These results support the biogenetic sequence that aspulvinone H (2) is formed from aspulvinone E (1) via aspulvinone I and then cyclized to aspulvinone B and aspulvinone A having the chromane rings. It remains to be defined whether aspulvinone I is 3 or 4.

The amount of aspulvinone H and I produced by the fungus decreases markedly with the age of the culture, and they disappear after 3 weeks when other aspulvinones become dominant.

References

1.	N.	Ojima, S. Takenaka, and S. Seto,	Phytochemistry, <u>12</u> , 2527 (1973).
2.	₩.	Ojima, S. Takenaka, and S. Seto,	Phytochemistry, <u>14</u> , 573 (1975).
3.	в.	T. Golding, R. W. Rickard, and Z.	Vanek, J.C.S. Perkin I, 1961 (1975).
4.	N.	Ojima, K. Ogura, and S. Seto, J.C	.S. Chem. Commun., 717 (1975).